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Abstract 

 
   This document presents a new kind of grammars: the 
Generative Dependency Grammar (GDG) and GDG with 
Feature Structure (FS) represented as Attribute Value Tree 
(AVT). This type of grammars is based on dependency trees 
(DT) and a generative process. GDG will eliminate some 
issues of Dependency Grammars DG (for example the 
missing of phrasal categories) and Generative Grammars GG 
(the problem of discontinuous structures) and will merge the 
advantages of the two types of grammar (GG  - the 
representation of phrasal categories; GDG - the handling of 
discontinuous structures as gaps and non projective 
constructions).  We present the generation process and the 
unification in GDG. Some properties of AVT and a logical 
representation of AVT are presented too. GDG is useful in 
grammar representations for natural language understanding, 
machine translation and data retrieval. 

 
 

1  Introduction 
 
If we will make a series of approximations that we will consider as satisfying for 
natural language understanding, we can start in language phenomenon analysis 
from the following considerations: 
   Level 0 of analysis: We will consider the reality as being partitioned in a discrete 
set of entities and relations between these entities. 
   Level 1 of analysis: We will consider that the humans build about the reality a 
vision that consist of entities representations and relations representations. This 
vision is generally not unique for all the humans. We will name this level the 
internal level of representation. 
   Level 2 of analysis (or linguistic level): We will consider that the linguistic 
expression of the representation of the entities and of the relations between the 
entities is made using entities names (words) and syntactic structures that merge 
these names in statements (about representations and therefore indirectly about 



 

 

reality). The entities names and the syntactic structures are specific to each natural 
language. 
   Let us take an example. We suppose that the “cats eat mice”. This is the level 0 
that is formed from three entities (the cats, the mice and the fact to eat) and two 
relations (between the cats and the fact to eat and between the fact to eat and the 
mice). A representation about these three entities and two relations is formed in the 
mind of an observer. This is the level 1 of analysis. Finally, the observer can build 
the statement “Cats eat mice”. This is the level 2 of analysis. In this statement we 
find the three entities and two relations. The syntax served to build the statement as 
a sequence of words. The relations and the entities founded in the level 1 of 
analysis served to chose the appropriate words for the level 2. We will try to find a 
representation for the level 1 and a method to obtain the level 1 from the level 2. 
The level 1 of analysis can be considered the semantic level. The relation between 
the level 1 and the level 0 is not a semantic problem but a truth problem (is there a 
level 0 corresponding to level 1?). The level one of analysis has as best 
representation the Generative Dependency Grammar (GDG). GDG is a sort of 
combination between Dependency Grammar (DG) and Generative Grammar (GG). 
   DG (Tesnière [17], Gaifman [5], Mel’cuk [10] [11], Hellwig [6], Hudson [7], 
McCord [8], Starosta [15], Milward [12]) tries to represent entities (as words) and 
relations between entities (words). They use dependency trees (DT) that contains 
usually words as nodes and relations (oriented links between words). We will take 
from DG the idea of the “relation” that we consider that express somehow the 
semantics. 
   GG (Chomsky [4]) try to express a process to obtain phrases starting from a root 
symbol and using some generative rules. We will take from GG the idea of the 
“sequence” of words that we consider that express somehow the syntax. 
   In this paper we will present the background elements of GDG. 
 

2  The Generative Dependency Grammar Definition 
 
Definition: A generative dependency grammar GDG is an 8-tupple GDG = {N, T, 
P, A, SR, CR, t0, R} where: 
   - N is the set of non-terminals n i.e. the set of the syntactic categories that can be 
described having a name and a structure. A non-terminal can be decomposed in 
others elements from N, T, P, A, SR, CR. The name of a non-terminal will be 
written between <...>. 
   - T is the set of the terminals t i.e. the set of the words that can be found in the 
lexicon or can be obtained by applying some flexional rules on words from the 
lexicon. The terminal will be written between “...“. 
   - P is the set of pseudo-terminals p i.e. the set of the non-terminals that contain 
only terminals. When we will describe a dependency tree or a grammar we will not 
cover all the words from the lexicon because in this case the number of rules from 
the grammar can be too big. So we can say that some non-terminals that we name 
pseudo-terminals (for example some nouns or some verbs) will never be described 
in the grammar. The name of a pseudo-terminal will be written between %...%. 



 

 

   - A is the set of the procedural actions a i.e. the set of the routines that can be 
used to represent a certain portion of the text that we analyze. For example a 
number represented like a sequence of digits or a mathematical formula or even an 
image with a certain significance that appear in a text can be “replaced” in 
grammars or dependency trees by a certain procedural action. The name of a 
procedural action  will be written between #...#. 
   - SR is the set of the subordinate relations sr i.e. the set of the relations between 
N, T, P, A, CR, respecting some rules. The links that enter in an sr come from one 
element that is considered to be subordinated to the elements that receive links that 
comes from this sr. The name of an sr will be written between @...@. 
   - CR is the set of the coordinate relations cr i.e. the set of the relations between 
N, T, P, A, SR, respecting some rules. The links that enter in a cr come from some 
elements that are considered to be coordinated each other but also from some other 
elements. The links that come from the coordinated elements (usually 2) are named 
fixed entries. The other entries are named supplementary entries. The name of a cr 
will be also written between @...@. 
 

 
Figure - 1. Graphical symbols 
 
   - t0 belongs to N and is named root symbol. 
   - R is a set of numbered rules of the form (i) ni->(si, qi) where; ni belongs to N; si 

is a sequence of elements from U U U APTN  (we will note also ntpa such an 

element), qi is a dependency tree having nodes from si and oriented labels from 

UCRSR  and i = 1, 2, 3, ... 

   The next conditions must be respected: 
   - All non-terminals from si must be found one time and only one in qi. Terminals, 
pseudo-terminals and direct actions from si can be found at most one time in qi. 
   - All terminals, pseudo-terminals and direct actions from qi must be found one 
time and only one in si. 
   - Eventually, qi can be empty. If si, and/or qi contain the same non-terminal, 
terminal, pseudo-terminal, direct action, subordinate relation or coordinate relation 
many times, then the apparition of the same element will be differently labeled in 
order to distinguish them. 
   - An ntpa can have zero or one output (i.e. a link oriented from the ntpa to other 
element) that goes to an sr or to a cr on fixed entries and zero, one or many inputs 
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(i.e. links from other elements that are oriented to the ntpa) that come from an sr. It 
will be noted by ntpa(i1, i2, …) or by ntpa() if no entry is available. 
   - An sr has always an output that goes to an ntpa or to a cr on a supplementary 
entry and one input that comes from an ntpa or from a cr. It will be noted by sr(i1). 
   - A cr can have zero or one output that goes to an sr or to a cr on fixed entry and 
can have m>=2 fixed inputs that come from ntpa or from cr and zero, one or many 
supplementary inputs that come from sr. It will be noted by cr(f1, f2,… / s1, s2, …) if 
it has supplementary inputs (where f1, f2, ... are fixed entries and s1, s2, ... are 
supplementary inputs) or by cr(f1, f2,…) if it has not supplementary inputs. We will 
consider m = 2 because this is used about correlative constructions that have two 
members. 
   The ntpa-s and the links between them will constitute a dependency tree DT. The 
graphic notations to represent DT are showed in the figure 1. 
   We can summarize the types of links as follows: 
   1. ntpa output   -> sr input 
   2. ntpa output   -> fixed cr input 
   3. sr output       -> ntpa input 
   4. cr output       -> sr input 
   5. cr output       -> fixed cr input 
   6. sr output       -> supplementary cr input 
   An important feature of the DT is the head. A head in a DT is a node that has 
only inputs and has no output. An ntpa node can be head; it has inputs of type 3 
(i.e. from sr relation). A cr node can be head; its fixed inputs are of type: 2 (from 
ntpa) and 5 (from other cr) and its supplementary inputs are of type 6 (from sr). An 
sr relation cannot be head. A dependency tree has one and only one head. 
   A DT can be described using a BNF notation as follows: 
   <dependency tree>::=  <ntpa sequence>|<cr sequence> 
   <ntpa sequence>   ::= ntpa(<ntpa entries>)|ntpa() 
   <ntpa entries>       ::= <sr sequence>,<ntpa entries>|<sr sequence> 
   <sr sequence>       ::= sr(<sr entries>) 
   <sr entries>           ::= <dependency tree>,<sr entries>|<dependency tree> 
   <cr sequence>       ::= cr(<fixed groups>/<supp. entries>)|cr(<fixed groups>) 
   <fixed groups>      ::= <fixed group>;<fixed groups>|<fixed group> 
   <fixed group>       ::= <dependency tree>,<fixed group>|<dependency tree> 
   A dependency tree that do not contains non-terminals will be named final tree. 
   Example: Let’s take an example that contains a gap: “I gave a book to the boy 
and a doll to the girl”. A grammar that can generate such a phrase is: 
(1) <phrase> -> ( <nominal group> <verbal group>, <nominal group>( @r1@(  
    <verbal group>()))) 
(2) <nominal group> -> ( “I”, “I”()) 
(3) <verbal group> -> ( <verb> <direct-indirect gap coordination>, <verb>(  
    <direct-indirect gap coordination>())) 
(4) <verb> -> ( “gave”, “gave”()) 
(5) <direct-indirect gap coordination> -> ( 
     <direct-indirect gap coordination member> “and” <direct-indirect gap  
     coordination member’>, @r2@( <direct-indirect gap coordination member>(), 
     <direct-indirect gap coordination member’>() / @r3@( “and”()))) 



 

 

(6) <direct-indirect gap coordination member> -> ( <direct> <indirect>, @r4@(  
     <direct>(), <indirect>())) 
(7) <direct> -> ( <indefinite article noun>, <indefinite article noun>()) 
(8) <indefinite article noun> -> ( “a” <noun>, <noun>( @r5@( “a”()))) 
(9) <indirect> ->( “to” <definite article noun>, “to”( @r6@(<definite article 
      noun>()))) 
(10) <definite article noun> -> ( “the” <noun>, <noun>( @r7@( “the”()))) 
(11) <noun> -> ( “book”, “book”()) 
(12) <noun> -> ( “boy”, “boy”()) 
(13) <noun> -> ( “doll”, “doll”()) 
(14) <noun> -> ( “girl”, “girl”()) 
 

 "I" "gave" "and

"to" "book

@r1@ @r2@ @r3@ 

@r4@ 1 2 

1 2 

"to"doll” @r4@ 1 2 

@r5@ @r6@ "the" 

"a" "boy" @r7@ 

@r’5@ @r’6@ "the1" 

"a1" "girl" @r’7@ 
 

 
Figure 2 – An example of DT 
 
   We noted by @r1@, @r2@, ... the relations. In a good description of a grammar 
these relations can have more appropriate names like: relation between subject and 
predicate, relation between article and noun, etc. For a certain natural language the 
number of the types of these relations cannot be too big.  
   The relation @r4@ will be a special kind of relation (of the type cr – coordinate 
relation) that links together the two parts (direct part and indirect part) of this gap. 
We can name this relation a direct-indirect gap relation. Of course, other kinds of 
gap relations can be defined. 
   The final DT for the phrase will be: 
   “I”( @r1@( “gave”( @r2@( @r4@( “book”( @r5@( “a”)), “to”( @r6@(“boy”( 
@r7@( “the”()))))), @r’4@( “doll”( @r’5@( “a’”())), “to”( @r’6@( “girl”( @r’7@( 
“the1”()))))) / @r3@(  “and”()))))) 
   We will explain in the next sections how this final DT can be generated from the 
grammar. In the figure 2 we represented this final DT. 
 

3  Non-Terminal Dependency Tree Substitution 
 
We will name non-terminal dependency tree a DT that has a non-terminal as head. 
We will name coordinate DT a DT that has a coordinate dependency as head. Let 
us take a non-terminal DT w that contains a non-terminal DT n = n’(u1, u2, ...) 



 

 

where n’ is a non-terminal and u1, u2, ... are DTs that act as entries in the non-
terminal n’. It is possible that n’ has no entries at all. It is possible too, that n’ have 
zero outputs (if it is a head of w) or one output that go somewhere in the tree w. To 
substitute n from w by a DT q means to obtain a new tree r that will replace n in w. 
If q = q’() is a DT without entries, then r = q’(). If q = q’(v1, v2, ...) is a non-
terminal DT where q’ is a non-terminal and v1, v2, ... are dependency trees that act 
as entries in the non-terminal q’, then r = q’(u1, u2, ..., v1, v2, ...). If q = q’(v1, v2 / t1, 
t2, ...) is a coordinate relation DT where q’ is a coordinate relation, v1, v2, ... are DTs 
that act as entries in the fixed entries of the coordinate relation q’ and t1, t2, ...  are 
DTs that act as entries in the supplementary entries of the coordinate relation q’ (it 
is possible that q’ has no supplementary inputs at all.), then r = q’(v1, v2 / t1, t2, ..., 
u1, u2, ...). 
 

4  Generation in a Generative Dependency Grammar 
 
We consider 2 rules (i) ni->(si, qi) and (j) nj->(sj, qj) of a GDG. We consider also 
that si and qi contains pj. We will obtain a new rule (k) nk->(sk, qk) as follows:  
   - sj will replace nj from si obtaining sk; 

   - qj will substitute nj from qi obtaining qk; 
   - nk = nj. 
   We will say that the rule (k) is immediately generated from the rule (j) using the 
rule (i). Let us suppose that we have a phrase sn that contains only terminals. Let us 
suppose that, by applying a sequence of generations (starting with a rule that has a 
root symbol in the left side), we will obtain finally a rule (h) nh->(sh, qh) where sh is 
a phrase. We will consider too that in nh there are not non-terminals, pseudo-
terminals was replaced by matching terminals taken from the lexicon and direct 
actions was replaced by what results from their execution. The execution of a 
direct action has as result a terminal or a sequence of terminals that are considered 
as a single terminal. We will say that sh is completely generated by the grammar 
GDG (or that sh is accepted by the grammar GDG). In this case, qh will be the final 
dependency tree of the phrase sh. 
   Remark: When a grammar rule is applied many times, all the elements of the rule 
are differently labeled for each application. 
   Example: Using the grammar from the Example 1 (section 2) we can generate the 
DT as follows: 
(15)(1, 2) <phrase> -> ( “I” <verbal group>, “I”( @r1@( <verbal group>()))) 
(16)(15, 3) <phrase> -> ( “I” <verb> <direct-indirect gap coordination>, “I”(  
   @r1@( <verb>( <direct-indirect gap coordination>())))) 
(17)(16, 4) <phrase> -> ( “I” “gave” <direct-indirect gap coordination>, “I”( 
   @r1@( “gave”( <direct-indirect gap coordination>())))) 
(18)(17, 5) <phrase> -> ( “I” “gave” <direct-indirect gap coordination member> 
   “and”<direct-indirect gap coordination member’>, “I”( @r1@( “gave”( @r2@(  
   <direct-indirect gap coordination member>(), <direct-indirect gap coordination 
   member’>() / @r3@( “and”())))))) 
 
   We can continue the generation process and we will obtain finally: 



 

 

 
(31)(30, 14) <phrase> -> ( “I” “gave” “a” “book” “to” “the” “boy” “and” “a1” 
   “doll”“to1” “the1” “girl”, “I”( @r1@( “gave”( @r2@( @r4@( “book”( @r5@(  
   “a”())), “to”( @r6@(“boy” ( @r7@( “the”()))))), @r’4@( “doll”( @r5@( “a1”())),  
   “to1”( @r’6@(“girl” ( @r’7@( “the1”()))))) / @r3@( and”())))))) 
 
   In the right side of the rule we obtained the surface text “I” “gave” “a” “book” 
“to” “the” “boy” “and” “a1” “doll” “to1” “the1” “girl” and the DT (see the figure 2): 
 
   “I”( @r1@( “gave”( @r2@( @r4@( “book”( @r5@( “a”())), “to”( @r6@(“boy” ( 
@r7@( “the”()))))), @r’4@( “doll”( @r5@( “a1”())), “to1”( @r’6@(“girl” ( @r’7@( 
“the1”()))))) / @r3@( and”()))))) 
 

5  GDG with Feature Structure 
 
One of the problem that arise when a GG is used is the great number of rules. This 
number can be controlled if we use a low number of metalinguistic symbols that 
can express a high number of linguistic situations. We will present such a 
formalism that is of type FS (feature structures). FS types are used for example in 
the PATR grammars (Shieber [14]) or in HPSG (Pollard [13]). In fact PATR or 
HPSG use AVM – Attribute Value Matrix. Instead of AVM we will define an 
AVT – Attribute Value Tree. We will consider also that the attribute are indexed or 
not indexed. If an attribute is indexed than in a certain context (for example in a 
grammar description rule) this attribute must take the same value for each ntpa that 
has associated the attribute. If an attribute is not indexed then in the same context 
this attribute can take any value from his value set. 
   An AVT can be described syntactically as follows: 
   1. <AVT> -> {<label>:<not labeled AVT>}|{<label>}|<not labeled AVT> 
   2. <not labeled AVT> -> < indexed AVT >|< non indexed AVT > 
   3. <indexed AVT> -> [<AVT content>] 
   4. <non indexed AVT> -> (<AVT content>) 
   5. <AVT content> -> <label>:<feature content>|<feature content>|<label> 
   6. <feature content> -> <attribute> = <attribute value list> 
   7. <attribute value list> -> <attribute value element>, <attribute value list>| 
      <attribute value element> 
   8. <attribute value element> -> <attribute value><AVT>|<attribute value> 
   The rule 1 express the fact that an AVT can have a label – the AVT label 
definition. The AVT label can be used later alone in the same context and this 
mean that the label must be substituted with its definition. The rule 5 express the 
fact that an attribute with his list of values can have a label – the attribute list label 
definition. This label can be used later alone in the same context and this mean that 
the label must be substituted with its definition. In this case the label is also a 
marker for the attribute so two attributes with different labels (markers) must be 
considered as different attributes. Usually a context is formed by the left hand of a 
rule and one alternant from the right hand of the rule in a GG. The labels defined 
here are a sort of generalization of reentrancy from HPSG. 



 

 

   Definition: A GDG with feature structure is a GDG where each ntpa can have 
associated an AVT. The AVT associated with the non-terminal from the left side of 
the rules have always only indexed attributes. 
   Example: Let us have the next statement in Romanian language: “Apele (the 
waters) linistite (still) sunt (are) adânci (deep)” that means “The still waters are 
deep”. 
   We will not use all the grammatical categories implied in the analysis of this 
statement but only few as an illustration. We will consider that the lexical class 
(verb, adjective, noun, ...) will be represented also like an attribute “class“ that will 
have these values. 
   Usually, the statement to be analyzed is first of all annotated i.e. each word will 
have attached his lemma and a particular AVT (that have only one value for each 
attribute. Each word can have many interpretations. For example “sunt” can 
represent the third person plural (are) or the first person singular (am). Though, for 
the sake of simplicity, we will consider only one interpretation for each word. 
   The annotated statement will be: 
   “Apele” apa[class = noun] [gender = feminine] [number = plural] “linistite” 
linistit [class = adjective] [gender = feminine] [number = plural] “sunt” fi [class = 
verb] [person: III] [number = plural] [mode = indicative] [voice = active] [time = 
present] “adânci” adânc [class = adjective] [gender = feminine] [number = plural] 
   We noted in italics the lemmas. 
   A GDG with features that can generate this statement can be as follows: 
(1) <phrase> -> ( <nominal group> [gender = masculine, feminine, neuter]  
   [number = singular, plural] [person = I, II, III] <compound nominal predicate>  
   [gender = masculine, feminine, neuter] [number = singular, plural] [person = I,  
   II, III], <nominal group>( @r1@( <compound nominal predicate> ()))) 
(2) <nominal group> [gender = masculine, feminine, neuter] [number = singular, 
   plural] [person = I, II, III] -> (%noun% [class = noun] [gender = masculine, 
   feminine, neuter] [number = singular, plural] %adjective% [class = adjective] 
   [gender = masculine, feminine, neuter] [number = singular, plural], 
   %noun%(@r2@(%adjective% ()))) 
(3) <compound nominal predicate>[gender = masculine, feminine, neuter] [number  
   = singular, plural] [person = I, II, III] -> (%verb% [class = verb] [gender =  
   masculine, feminine, neuter] [number = singular, plural] [mode = indicative]  
   [voice = active] [time = present, future, imperfect past] %adjective% [class =  
   adjective] [gender = masculine, feminine, neuter] [number = singular, plural], 
   %verb%(@r3@(%adjective% ()))) 
   As we can see we used pseudo terminals for nouns, verbs, adjectives, so this 
grammar can generate a set of statements. 
 

6  AVT Properties 
 
The labels are used in AVT only in order to reduce the length of the description. 
Before any AVT operation the labels must be substituted with their definition. 
During this substitution the eventually reccursivity must be identified. The 
reccursivity are not accepted. 



 

 

   AVT themselves are used also in order to represent more compactly a greater 
number of ntpa-s. How many such ntpa-s represent an AVT? The AVT associated 
with such an ntpa will be named EC (exclusive combination). An EC will have for 
each attribute only one value. We can compute how many paths are in an AVT, 
how these paths can be enumerated, how many EC-s are in an AVT and others 
proprieties. We explain here only how we can enumerate the EC-s in an AVT. 
   In order to enumerate (generate) all the EC-s in an AVT we will use the notations 

∏ (and “*”) that will mean “string concatenation” and ∑ (and “+”) that will 

mean “string alternatives”. With these notations, the enumeration of the EC-s will 
be made with the next recursive formulas: 

   - LES(T) = ∏
k

kAAES )(  is the set of EC (LES = List Exclusive Set) in an 

AVT T that has on the first level an attribute list Ak. 

   - AES(A) = ∑
i

iaAVES )/(  is the set of EC-s that pass through the attribute A 

(AES = Attribute Exclusive Set) that has a list of values ai. 

   - VES(A/a) = ∏
j

jAAESaA )(*/  is the set of EC-s that contain the attribute 

value a of the attribute A (VES = Value Exclusive Set) if a has associated an 
attribute list. If a has not associated an attribute list then VES(A/a)=A/a. 
 

7  Logical Interpretation of an AVT 
 
We will give a logical interpretation of an AVT, i.e. a logical expression that 
correspond to an AVT. Using such an expression we can make in a more simple 
way some operations with AVT-s. In the enumeration of the EC-s we will consider 
that the sign “*” will represent the logical operation “and” and the sign “+” will 
represent the logical operation “or”. In this case LES(T) of an AVT T can be 
“read” as a logical expression. As in any ordinary logical expression we will have: 
   a/a1 * a/a1 = a/a1 
   a/a1 + a/a1 = a/a1 
   and we will have all the others proprieties of the logical operators. 
   Because (a/ai) and [a/ai] represent the indexing type, we will introduce also the 
next conventions: 
   (a/ai) * (a/ai) = (a/ai) 
   (a/ai) + [a/ai] = [a/ai] 
   [a/ai] * (a/ai) = [a/ai] 
   [a/ai] + [a/ai] = [a/ai] 
   This means that the indexing has a priority against non indexing. 
   Because an attribute can not have in the same time two different value we will 
consider: 
   (a/ai) * [a/aj] = false 
   (a/ai) * (a/aj) = false 
   [a/ai] * (a/aj) = false 



 

 

   [a/ai] * [a/aj] = false 
where i #j and “false” as “true” have all the proprieties from logical expressions. 
   The next rule must always be respected by a logical expression in order to be an 
AVT transformation: 
   Each term of a disjunction must contain at least one factor that has the same 
attribute name. 
   So, in each disjunction we must have something of the form: 
   A/x1...+ A/x2...+ A/x3... + A/x4 ...  
   We can use the logical representation of an AVT to make some operations and 
optimizations. 
   Example 
   S           = [a = a1[b = b1, b2][c = c1, c2], a2(b = b1, b2)][e = e1, e2] 
   LES(S) = [a/a1] * [b/b1] * [c/c1] * [e/e1] + [a/a1] * [b/b1] * [c/c2] * [e/e1] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e1] + [a/a1] * [b/b2] * [c/c2] * [e/e1] + 
   [a/a2] * (b/b1) * [e/e1] + [a/a2] * (b/b2) * [e/e1] + 
   [a/a1] * [b/b1] * [c/c1] * [e/e2] + [a/a1] * [b/b1] * [c/c2] * [e/e2] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e2] + [a/a1] * [b/b2] * [c/c2] * [e/e2] + 
   [a/a2] * (b/b1) * [e/e2] + [a/a2] * (b/b2) * [e/e2] 
   By applying different logical transformations we will obtain: 
   LES(S) = ([a/a1] * ([c/c1] + [c/c2]) + [a/a2]) * ([b/b1] + [b/b2]) * ([e/e1] + 
[e/e2]) 
 

8  The Transformation of a Logical Expression  
 into an AVT 
 
In the above section we explained how to obtain a logical expression representing 
an AVT. On this logical expression, some logical transformation can be executed. 
Finally, the logical expression can be transformed again in an AVT. We will show 
the method using the example from the section 7. We will consider as starting form 
that do not contains parenthesis and all the transformations described in 7 was 
applied. 
   LES(S) = [a/a1] * [b/b1] * [c/c1] * [e/e1] + [a/a1] * [b/b1] * [c/c2] * [e/e1] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e1] + [a/a1] * [b/b2] * [c/c2] * [e/e1] + 
   [a/a2] * [b/b1] * [e/e1] + [a/a2] * [b/b2] * [e/e1] + 
   [a/a1] * [b/b1] * [c/c1] * [e/e2] + [a/a1] * [b/b1] * [c/c2] * [e/e2] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e2] + [a/a1] * [b/b2] * [c/c2] * [e/e2] + 
   [a/a2] * [b/b1] * [e/e2] + [a/a2] * [b/b2] * [e/e2] 
   a) We count the apparitions of each attribute in EC-s (an attribute can appear 
only one time in a EC because we considered the expression already simplified). In 
our case we will obtain: 
   a: 12, b: 12, c: 8, e: 12 
   b) We count how many EC-s there are. Here we obtain 12. The attributes that 
appears in all the EC-s will be the attributes that will appear on the first level of the 
tree. In our case we will have something of the form: 
   [a = ...] 
   [b = ...] 



 

 

   [e = ...] 
   We create a number of EC groups equal with the number of the EC-s that have 
the maximum number of apparitions. Each group contains all the EC-s from the 
expression. We consider that each group is associated with an attribute from those 
EC-s that had the apparition number equal with the number of EC-s from the 
current sub expression. 
   LES(S) = ([a/a1] * [b/b1] * [c/c1] * [e/e1] + [a/a1] * [b/b1] * [c/c2] * [e/e1] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e1] + [a/a1] * [b/b2] * [c/c2] * [e/e1] + 
   [a/a2] * [b/b1] * [e/e1] + [a/a2] * [b/b2] * [e/e1] + 
   [a/a1] * [b/b1] * [c/c1] * [e/e2] + [a/a1] * [b/b1] * [c/c2] * [e/e2] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e2] + [a/a1] * [b/b2] * [c/c2] * [e/e2] + 
   [a/a2] * [b/b1] * [e/e2] + [a/a2] * [b/b2] * [e/e2]) * 
   ([a/a1] * [b/b1] * [c/c1] * [e/e1] + [a/a1] * [b/b1] * [c/c2] * [e/e1] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e1] + [a/a1] * [b/b2] * [c/c2] * [e/e1] + 
   [a/a2] * [b/b1] * [e/e1] + [a/a2] * [b/b2] * [e/e1] + 
   [a/a1] * [b/b1] * [c/c1] * [e/e2] + [a/a1] * [b/b1] * [c/c2] * [e/e2] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e2] + [a/a1] * [b/b2] * [c/c2] * [e/e2] + 
   [a/a2] * [b/b1] * [e/e2] + [a/a2] * [b/b2] * [e/e2]) * 
   ([a/a1] * [b/b1] * [c/c1] * [e/e1] + [a/a1] * [b/b1] * [c/c2] * [e/e1] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e1] + [a/a1] * [b/b2] * [c/c2] * [e/e1] + 
   [a/a2] * [b/b1] * [e/e1] + [a/a2] * [b/b2] * [e/e1] + 
   [a/a1] * [b/b1] * [c/c1] * [e/e2] + [a/a1] * [b/b1] * [c/c2] * [e/e2] + 
   [a/a1] * [b/b2] * [c/c1] * [e/e2] + [a/a1] * [b/b2] * [c/c2] * [e/e2] + 
   [a/a2] * [b/b1] * [e/e2] + [a/a2] * [b/b2] * [e/e2]) 
   We can see that if we will develop this expression and we make some 
simplifications we will obtain the initial expression. 
   c) From each EC of a group we will eliminate the attributes that are associated 
with others groups. 
   LES(S) = ([a/a1] * [c/c1] + [a/a1] * [c/c2] + [a/a1] * [c/c1] + [a/a1] * [c/c2] +  
   [a/a2] +[a/a2] + [a/a1] * [c/c1] + [a/a1] * [c/c2] + [a/a1] * [c/c1] + [a/a1] * [c/c2]  
   + [a/a2] + [a/a2]) * ([b/b1] * [c/c1] + [b/b1] * [c/c2] + [b/b2] * [c/c1] + [b/b2] *  
   [c/c2] + [b/b1] + [b/b2] + [b/b1] * [c/c1] + [b/b1] * [c/c2] + [b/b2] * [c/c1] +  
   [b/b2] * [c/c2] + [b/b1] + [b/b2]) * ([e/e1] + [e/e1] + [e/e1] + [e/e1] + [e/e1] +  
   [e/e1] + [e/e2] + [e/e2] + [e/e2] + [e/e2] + [e/e2] + [e/e2]) 
   d) We will simplify the expressions from the parenthesis by keeping one sample 
from each combination and by applying transformations of the type x * y + x = x. 
   LES(S) = ([a/a1] * [c/c1] + [a/a1] * [c/c2] + [a/a2]) * ([b/b1] + [b/b2]) *  
   ([e/e1] + [e/e2]) 
   e) In each group we take as common factor the attribute (and value) of the 
attribute associated with this group: 
   LES(S) = ([a/a1] * ([c/c1] + [c/c2]) + [a/a2]) * ([b/b1] + [b/b2]) * ([e/e1] +  
   [e/e2]) 
   We will apply the steps (a) – (e) for each most inside parenthesis (for each 
attribute value). We continue this process until all the most inside parenthesis will 
contain only one attribute. In our case we already obtained the most inside 
parenthesis with only one attribute. 
   f) We can transform now the expression in an AVT using the next procedure: 



 

 

   f1) For each sequence of the type ([x/x1] + [x/x2] + [x/x3] + ...) or ((x/x1) + 
(x/x2) + (x/x3) + ...) we apply the transformation [x = x1, x2, x3, ...] respectively (x 
= x1, x2, x3, ....). (Normally we can not have this kind of sequences with different 
index types, but anyway the index has a priority against not index). In our case we 
will have: 
   S = ([a/a1] * [c = c1, c2] + [a/a2]) * [b = b1, b2] * [e = e1, e2] 
   f2) For all the sequences of the type [x/x1] * (sequence) or (x/x1) * (sequence) 
we apply the transformation into [x/x1(sequence)] respectively (x/x1(sequence)). In 
our case we have: 
   S = ([a/a1[c = c1, c2]] + [a/a2]) * [b = b1, b2] * [e = e1, e2] 
   f3) For all the sequences of the type ([x/sequence1] + [x/sequence2] + 
[x/sequence3] + ...) or ((x/sequence1) + (x/sequence2) + (x/sequence3) + ...) we 
apply the transformation into [x = sequence1, sequence2, sequence3, ...] respectively 
(x = sequence1, sequence2, sequence3   ). In our case we have: 
   S = [a = a1[c = c1, c2]], a2] * [b = b1, b2] * [e = e1, e2] 
   f4) For all the sequences of the type [sequence1] * [sequence2] * [sequence3] ... 
we apply the transformation into [sequence1] [sequence2] [sequence3] ... . In our 
case we have: 
   S= [a = a1[c = c1, c2]], a2] [b = b1, b2] [e = e1, e2] 
   We obtained a well formed AVT. 
 

9  The Unification 
 
We can define different operations/notions on the AVT: intersection (the common 
part of two AVT-s), difference (what it is in the first AVT and is not in the second 
AVT), sorted AVT (using total order relation on names of attributes and attribute 
values), AVT normalization (the “less deep” form of an AVT), etc. The most 
important operation is the unification that will make possible the substitution of a 
non-terminal from right side of a rule with a the rule that have in the left side the 
appropriate non-terminal. The substitution process is more complicated and we 
have not the space to fully explain it here. We will give only the definition of the 
unification. 
   Definition: Two ntpa-s having associated AVT-s are unifiable if they have the 
same name and the unifier of the two AVT-s exists (i.e. it is not empty). (If the two 
ntpa-s have not associated AVT-s then they are unifiable only if they have the 
same name.) 
   Definition: A unifier of two AVT-s is an AVT corresponding to an a expression 
obtained making a logical “and” between the logical forms of the two AVT-s. 
   Example: Let us have two ntpa-s with the same name and with two AVT-s 
associated, S an T: 
   S = [a = a1, a2, a3, a4] [b = b1, b2, b3] [c = c1, c2[f = f1][g = g1, g2]] 
   [d = d1, d2[f = f2, f3][g = g1, g3, g4]] 
   T = [c = c1[h = h1], c2, c3] [d = d1, d2[g = g3, g4, g5]] [e = e1, e2, e3, e4] 
   The unifier R of S and T is R = S * T. We transform S and T in their logical 
form. We execute all the needed operations on the expression R * T. Finally, using 
the method described in section 8 we obtain: 



 

 

   R = [a = a1, a2, a3, a4] [b = b1, b2, b3] [c = c1] [h = h1]  
   [d = d1[g = g3, g4], d2[f = f2, f3][g = g3, g4]] [e = e1, e2, e3, e4] 
   The calculus can be complicated but it is not a problem to implement it in a 
computer program. 
 

10  Conclusions 
 
We think that the GDG with feature structure have the power to represent the 
linguistic information and they do not imply an excessively difficulty to be used 
(tough it is not a trivial task to make a good description of a grammar). Using a 
GDG we can parse texts and obtain dependency trees associated to a source text. 
   There are many directions in which GDG can be (and was) extended. For 
example we can define GDG with many DT-s in the right side of the rules. This 
will facilitate the description of the recursive rules. The GDG we defined uses a 
kind of relations that can be named direct relations because they link directly ntpa-
s that are found in the current rule. We can define a more complicated sort of 
relations: indirect relations that link external ntpa to the current rule. These 
relations will facilitate too the writing of the grammar rules, especially for long 
distance relation between phrase parts, without the necessity to have all these parts 
in the same rule. 
   There are at least few domains where these GDG can be used: the machine 
translation, the data retrieval, the language understanding. In the machine 
translation, these DT can describe relatively easily complex linguistic structures 
equivalences. In the data retrieval, on these DT can be formulated logical clauses 
that gather all the information from the source text. The number of the types of 
relations between the terminals and direct actions that we find in final dependency 
tree is not too big so a set of supplementary logical clauses can complete the 
grammar description. Using the clauses obtained from the final dependency trees 
and these supplementary clauses, complex inferences can be made on the 
dependency trees. We consider that the DT built by an analysis using GDG capture 
the “meaning” of the texts so it can serve to natural language understanding. 
   Based on GDG formalism presented here we realized a specialized language 
GRAALAN (GRAmmar Abstract LANguage) that has a set of other features also. 
The logical and linguistic background of this language was defined and we 
presented in this paper only some elements of this background. Using GRAALAN 
we started to build a GDG with feature structure of the Romanian language. The 
Romanian language has a very difficult grammar with quite free word order. For 
example, only to express the accord between a multiple regent and a subordinate 
(in gender, number, animation, order) there are about 1350 situations that must be 
observed. We realized so far the description of the general rules for regent – 
subordinate relation (nominal – attributes, verbs – adjuncts, subjects - predicates) 
and we partially realized the description of nominal – attributes relation. 
 
References 
 
1. Covington, Michael A. A Dependency Parser for Variable-Word-Order Languages, 

Research Report AI-1990-01, The University of Georgia, Athens, Georgia, 1990 



 

 

2. Covington, Michael A. 1994 Discontinuous Dependency Parsing of Free and Fixed 
Word Order, Research Report AI-1992-02, The University of Georgia, Athens, Georgia, 
1994 

3. Bröker, Norbert How to define a context free backbone for DGs: Implementing a DG in 
the LFG formalism, Papers of the Workshop on the Processing of Dependency-based 
Grammars (COLING-ACL’98), 1998, pp.29-38 

4. Chomsky, Noam Generative Grammar: Its Basis, Development and Prospects. Studies 
in English Linguistics and Literature, Special Issue, Kyoto University of Foreign 
Studies, 1988 

5. Gaifman, H. Dependency Systems and phrase structure systems, Information and 
Control, 1965, pp. 304-337 

6. Helwig, P. Chart Parsing according to the slot and filler principle, Processing of the 
12th Int. Conf. On Computational Linguistics, Budapest, Hungary, 22-27 August 1988, 
Vol.1, 1988, pp. 242-244 

7. Hudson, R English Word Grammar, Oxford UK, Basil Blackwell, 1990 
8. McCord, M Slot grammar: A system for simpler construction of practical natural 

language grammars, in R. Studer (Ed.), Natural Language and Logic, Berlin Heidelberg 
Springer, 1990, pp.118-145 

9. Kahane, Sylvain, Alexis Nasr, and Owen Rambow Pseudo-projectivity: A polynomially 
parsable nonprojective dependency grammar. In Proceedings of the 36th Annual 
Meeting of the Association for Computational Linguistics (ACL '98), Montreal, Canada, 
1998 

10. Mel'cuk, I.A., Pertsov, N.V. Surface Syntax of English: A formal model within the 
Meaning-Text Framework, Amsterdam/PA: John Benjamins, 1987 

11. Mel’cuk, I.A. Dependency Syntax: theory and practice, State University of New York 
Press, Albany, 1988 

12. Milward, D. Dynamic Dependency Grammar, Linguistics and Philosophy 17, 
December, 1994, pp. 561-606 

13. Pollard, C. Sag, I. A. Head-driven Phrase Structure grammar, University of Chicago 
Press and Standford CSLI Publications, 1994 

14. Shieber, Stuart M. An Introduction to Unification Based Approaches to Grammar, 
CLSII Lecture Notes Series, Number 4, Center for the study of Language and 
Information, Stanford University, 1986 

15. Starosta, S Lexicase revisited. Department of Linguistics, University of Hawaii, 1992 
16. Teich, Elke Types of syntagmatic grammatical relations and their representation, 

Papers of the Workshop on the Processing of Dependency-based Grammars (COLING-
ACL’98), 1998, pp.39-48 

17. Tesnière, L. Éléments de syntaxe structurelle, Paris, Klincksieck, 1959 
 


